Fused Adaptive Lasso for Spatial and Temporal Quantile Function Estimation
نویسندگان
چکیده
Quantile functions are important in characterizing the entire probability distribution of a random variable, especially when the tail of a skewed distribution is of interest. This article introduces new quantile function estimators for spatial and temporal data with a fused adaptive Lasso penalty to accommodate the dependence in space and time. This method penalizes the difference among neighboring quantiles, hence it is desirable for applications with features ordered in time or space without replicated observations. The theoretical properties are investigated and the performances of the proposed methods are evaluated by simulations. The proposed method is applied to particulate matter (PM) data from the Community Multiscale Air Quality (CMAQ) model to characterize the upper quantiles, which are crucial for studying spatial association between PM concentrations and adverse human health effects.
منابع مشابه
Bayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data
Dynamic panel data models include the important part of medicine, social and economic studies. Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models. The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance. Recently, quantile regression to analyze dynamic pa...
متن کاملBehavior of Lasso Quantile Regression with Small Sample Sizes
Quantile regression is a statistical technique intended to estimate, and conduct inference about the conditional quantile functions. Just as the classical linear regression methods estimate models for conditional mean function, quantile regression offers a mechanism for estimating models for conditional median function, and the full range of other conditional quantile functions. In this paper d...
متن کاملUnified LASSO Estimation via Least Squares Approximation
We propose a method of least squares approximation (LSA) for unified yet simple LASSO estimation. Our general theoretical framework includes ordinary least squares, generalized linear models, quantile regression, and many others as special cases. Specifically, LSA can transfer many different types of LASSO objective functions into their asymptotically equivalent least-squares problems. Thereaft...
متن کاملSelf-adaptive Lasso and its Bayesian Estimation
In this paper, we proposed a self-adaptive lasso method for variable selection in regression problems. Unlike the popular lasso method, the proposed method introduces a specific tuning parameter for each regression coefficient. We modeled self-adaptive lasso in a Bayesian framework and developed an efficient Gibbs sampling algorithm to automatically select these tuning parameters and estimate t...
متن کاملAdaptive search area for fast motion estimation
In this paper a new method for determining the search area for motion estimation algorithm based on block matching is suggested. In the proposed method the search area is adaptively found for each block of a frame. This search area is similar to that of the full search (FS) algorithm but smaller for most blocks of a frame. Therefore, the proposed algorithm is analogous to FS in terms of reg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Technometrics
دوره 58 شماره
صفحات -
تاریخ انتشار 2016